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1 Introduction

| learned about this “trick” in a lecture by John Conway a nemtif years ago. He calls it “Rational Tangles”
and there is plenty of information about it on the interneinc® then | have used it myself in classrooms
of students of middle school age and older. The underlyinthemaatics is very interesting, but it is not

necessary that the students understand the mathematies$ #olgt out of the trick. In fact, some of the

mathematics | do not understand.

This document is intended for teachers and includes somegpgital advice on how to use Conway’s trick
to teach the students something about mathematics.

The idea is that we can associate a number with a tangle ofdpesrand that by performing a sequence of
two simple operations, we can untangle the ropes in a stfaigbard way.

Often the best way to get students to practice rote mathesiatto give them a problem that is intrinsically
very interesting, but whose solution requires repeatecliéations of the sort that you are trying to get them
to practice. To do these rope trick calculations, the sttedefill need to practice arithmetic with positive
and negative fractions. There is also an opportunity foraaded students to look at far more interesting
mathematics.

2 Getting Started

To demonstrate the trick, you need four students and twaharaf rope that are about 10 feet long. Heavier
rope is better because it is easier to see the knot struatdré s harder to accidentally pull into tight knots
that are difficult to work with. If the ropes are of two differtecolors, the tangle structure is even easier to
see. Bring a few plastic shopping bags.

Get four volunteers to stand at the corners of a rectangleeafront of the class with each student holding
one end of a rope. In the initial configuration, the two ropresparallel to each other and parallel to the front
row of seats in the classroom. In Figure 1, the top pair oflfianes represents the two ropes, and the small
circles at the ends with the letters “A”. “B”, “C” and “D” repsent the four students. If you imagine that you
are looking down on the students from the ceiling, the regh@tlass is seated above the entire figure on the
page. The four students at the corners face the rest of the cla

Make sure that each student has a solid grip on the rope, pervapping the end once around their hand
so that it is not accidentally dropped. During the trick, tuwdent should ever let go of his or her end of the
rope. Don't let the kids start jerking on the rope, since ie@nd comes loose, it is very easy to lose track



of exactly how the ropes were tangled, and if this occurstribk will fail, and the students will lose their
interest rapidly. Also, although the trick works for arbitity complex tangles, be sure to work with simple
ones at first since there is much less chance of an error.

You can explain to the kids that they are going to do sometlilkega square dance where the four students
perform one of three “dance figures”. Also explain that théahconfiguration with the parallel, untangled
ropes will be assigned the number zero, and that the perfarenaf each dance figure will affect that number
in a fixed way. Also, tell the rest of the kids in the class to p#gntion, since you'll swap out sets of kids
from time to time so that many more of them can be part of themact

The only thing that matters is the configuration of the ropgkich student is in which position does not
affect the number assigned to a particular tangle.

3 The Three Basic Dance Figures

Conway calls the two main dance figures “Twist 'em up” and ‘Ttem around”. The unfortunate thing
about this choice is that they both begin with the lettEF.“If you're trying to analyze the results of various
sequences, these names do not provide an easy shorthaed. wikuse “Twist” and “Rotate”, since then
you can write something likeI'T' RT R” to indicate that sequence of 5 figures in the dance (in thée cavo
twists, followed by a rotate, then a twist, and finally, arestiotate). In what follows, | will use the names
Twist andRotate, and “I"” and “R” as shorthand, especially when | need to refer to a sequehnoewes.

(In fact, we will see that when a sequence is repeated, welsamse an exponential notation. For example,
the sequenc&TTT RTTT R can be written using the shorthafld RT3 R.)

Later in this article we will get even a little more sloppy asaly things like “apply & T'R” as a shorthand
for “apply aTwist, then anothefwist and aRotate’”.

When explaining the moveTiist”, make sure that all four students pay attention, sincepalgh only two
of them perform any particulaiwist, they may be arranged differently later in the dance andhaiie to do
it when they are in those positions.
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Figure 1: Twisting

To perform theTwist dance figure, the two students on the left (from the pointefwaf the students) change
places, with the student initially in the rear lifting hisloer rope and the student in front stepping back under
it. As itis labeled in Figure 1, students A and B swap placdsne B lifts his or her rope and A steps under



it to the rear. In Figure 1 the results of performing zero,,dn® and three of th@wist dance figures (or,

in shorthand, performin@®, T', T2 andT?) from the initial (zero) configuration are shown from top to
bottom. Notice that from the points of view béth of the students holding the ropes, after starting from zero
and performing jusfwist moves, the ropes will appear to twist away from them in a chas& direction.
Notice that with eacfTwist, the positions of students A and B are swapped. Demonstristéot the class.
Near the end of this document, in Figure 2 are some photosgfda made with real rope that are probably
easier to visualize than those in Figure 1.

Each time alwist move is made, the number associated with the tangle is isedday1, so in Figure 1 the
four tangles from top to bottom are represented by the nusiihér 2 and3. If the tangle’s number is a pure
integer like this, then the integer represents the numbkealfftwists in the rope.

Conway'’s dance figures for manipulating tangles do not admiitnTwist figure (which would exactly undo
a Twist), but if there were one, it would be easy to do: the same twlgean the left change places, but
this time the person in front raises the rope and the pershimthesteps under it. Such anTwist dance
figure would subtract from the tangle’s associated number. This is a very obviousept, and ifTwist and
UnTwist were the only two legal moves, it's clear that starting froenaz any positive or negative integer
could be obtained, and if you knew that number, the ropesiddoeiuntangled by performing that number of
UnTwists or Twists, depending on whether the number were positive or negative

The second dance figufBjsplay, does nothing to the tangle; it is simply to display the ctindiof the ropes
and tangle to the rest of the class. To ddigplay, the two people farthest from the class raise their ropes and
the two in front lower them so the tangle is displayed in anhstiaucted way. Conway usually also required
that everyone in the class cheer and clap whBisplay dance figure was performed.

To perform the third dance figurotate, each student moves one position clockwise, when viewed fro
above. In Figure 1 if we began from the top arrangment in thedigaRotate would move A to C's position,

B to A's position, D to B’s position and C to D’s position. If yavere toRotate four times in a row, each
student would wind up exactly where they started. Demotestoathe class that at least when there are only
twists in the rope (and in fact it will always be true) that tRotate dance figures will return the ropes back
to where they started, even though the students will be ongipesite sides. Perhaps this can be made clear
by reminding the students that the numBeffor example, represents 3 clockwise half-twists of theesop
from the point of view of any of the students. As they turn amdunothing is going to change the clockwise
orientation, so after the two pairs on the ends have swapipedq they still see three clockwise half-twists,
so rope configuration is unchanged.

This observation indicates that the operation on the numgsociated with the tangle has to bring it back to
where it started if you apply that operation twice. Depegdin the sophistication of the class, you might
use functional notation as follows:

Letz be the number associated with the current tangle. If we aplyist, we'll use the functiont(z) = x+

1 to indicate what &wist does to the current number. At this point, we don’t know whatRotate number
r(x) does, but we do know two things. Cleark(r(r(r(x)))) = x, since rotating everyone completely
around the square obviously leaves everything completetyhanged, no matter what the tangle. We also
know for sure that if the tangle consists only of twists, thér(x)) = z.

Warning: This functional notation may be confusing, since the fuorihave to be written in the opposite
order that the dance figures are performed. For example, dtaré from a tangle whose associated number
is z and do alwist followed by aRotate, we've been using the notatiof"R” to indicate that: “twist, then
rotate”. But to figure out what the resulting correspondingber should be, th&wist will turn z into ¢(x)



and theRotate function will operate ort(x) to produce-(¢(x)). It's easy to see how this reversal will always
occur, so that something lik&d*TRTTTRT = T?>RT3RT” will convert an initial numbet to:

t(r(EEE(r(E(E(2))))))))-

So the bottom line is that unless you've got a sophisticatetieace, it's probably a good idea to avoid the
functional notation.

At this point we still don’t know exactly howRotate should affect the tangle’s associated number. All we
know (or at least suspect) is that applyiRgtate twice brings us back to where we started. In other words,
r(r(z)) = «.

For another clue about hoRotate should affect the number (or alternatively, the formr¢f)), have the
students do this: Start from the ropes in a “zero” tangle. BeTwist (so the number is now). Next do
aRotate. Finally do anotheffwist, and they will find that this brings the ropes back to the uglaah state;
namely, zero. This means that after tRetate, the number must have beeri, since adding to it brings us
back to a0 configuration. SdRotate changes d to a—1. (Alternatively, using the functional notations we
could write:r(1) = —1.)

The class will then probably make the reasonable (but wrgng}s that &otate dance figure multiples the
number by—1. Sometimes they even guess that it add&ou can convince them that addi@gs clearly
wrong, since doing it twice should return to the original rnenand adding twice will add4 to the original
number. The conjecture thRibtate multiplies the number by-1 (or functionally, that*(z) = —x) makes
sense, since multiplying by 1 twice returns to the initial number. But it's easy to testarfrom0, do two
Twists (which will convert the tangle’s number 2 followed by aRotate. If Rotate multiplies by—1, then
the ropes should then be in the state, and twdwists should ad@ to the—2, returning the tangle to the
initial state. Try it, and see that this does not happen.

Depending on the sophistication of the class, you can ettethem the answer, or try to lead them to it
by considering other operations that turinto —1 but not2 into —2, yet when repeated twice bring every
number back to itself.

Some classes have students who have a good enough geontetition to look at a tangle as simple as that
generated by starting at zero and then perfornifig = T2R (alternatively, producing(t(t(n)))). The
sequence that undoes itiSRTT = T RT?, for some reason. At least that’s another data point.

Here is one other thing that can be done: DBAR which produces a numbet Have the class take a good
look at the ropes in this configuration. Follow that by &which produces: + 1) and notice that the result is
just a mirror image of. In the same way that1 and1 are mirror imagesy andx + 1 are also. This means
that another good guess might be that = = + 1, which we can solve to yield = —1/2. If this is true,
then we know that thRotate command convertsinto —1/2.

If the class is a little bit sophisticated, here is anotheerthing to do. Start with the usual zero configuration
and do a singl®otate. Now do any number ofwist operations. Th@wist operations have no effect: the
ropes remain parallel to each other, but perpendiculargdrtmnt row of the class. This means that whatever
numberr(0) happens to be (let’s call it for now), this “number’ has the strange property that 1 = i.
Now there aren’t any normal numbers like that, but maybe drtheokids will come up with the idea that
oo + 1 = o0, S0 perhaps = oo, whatever that means.

If that's the case, we havér(z)) = z, we haver(1) = —1, it seems likely that(2) = —1/2 and we have
r(0) = oo (and obviously, if we rotate thext” configuration we’'ll return to zero, se(co) = 0). These
may provide enough clues for a sophisticated class to déterthe correct operation to associate with the



Rotate dance figure. (Actually, an even better number to assign high-oo, but that may require even
more sophistication on the part of the students.)

The correct answer is th&otate takes the tangle represented:bwnd turns it into the tangle represented
by —1/z. Thus, starting from zero, the sequeC€R leaves a tangle with value1/2. You can check
this by starting from zero, doing AT R (which should leave-1/2), then doing &l (yielding a value of
—1/24 1 = 41/2), then anR (yielding —2) and then &'T brings you back to zero. Have the class check
that this works for the examples examined so far, and if treegliscovered theo idea, that it makes some
sort of sense even then.

See if the kids can figure out how to ge¥d"1" (with value3) back to zero. It's a little bit complicated and
requires 8 steps which are listed below. If the kids have ea igow to proceed, the following clue may be
enough to get them going: “We're starting-a8 and trying to get to zero. If we do Bwist, we'll just be

at +4, which is even farther from our goal.” This should lead thaskio think that &Rotate is the best way
to proceed. After they've done tHRotate command, if they're still wondering what to do, say, “If yoo d
anotherRotate, it'll just undo the effects of your previouRotate”. Thus it may be clear that the only way
to make progress toward zero fron3 is to begin withRT'. In any case, let them work on it for a while, but
here is the fastest sequence that returBdo zero:
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4 Getting to Zero

At this point you can begin to consider how an arbitrary tamgbf the rope using th@wist and Rotate
commands can be converted back to the untangled state agjaganly theTwist andRotate commands.
You might begin by having the kids suggest moves that tardgedpe a little bit: perhaps seven or eight
steps, but carefully keeping track of the numbers. For noakersure they start with at least tWaists and
mix in both Twists andRotates after that.

If they try to do twoRotates in a row, point out that although this is perfectly legag secondRotate undoes
the first, so the two moves taken together achieve nothing.

What you can do is collect move suggestions from differeds kkeeping track of the tangle’s number until
it is “suitably” complex. Also, as your first example, stoth after a command has left the number positive.
For example, the sequen& RTTT RT, starting from zero, leaves a tangle with associated nurdier
This is a nice number since it doesn’t have numerator or démator that's too big, but it is complicated
enough to be interesting. We'll use this example in whabfed.

Tell the kids that their goal is to get the numi3¢6 down to zero using onlfRotate and Twist commands.
As a first hint, tell them thatwist will add 1 which will take the number even farther away from zero, so to
make progress, the only possible commarn@asate. We now have-5/3.

Point out now that anoth&otate will just undo the one they did, so the only reasonable next & aTwist,
yielding —2/3. At this point aRotate will not put you back where you started, but it would yield sjiwe
number, and that can’t be good, since anofRetate is useless, and one or mofevist commands would
take the number away from zero. Thus frer2/3, the only reasonable move is anotfieiist, yielding1/3.

Repeating the arguments above, we clearly neRdtate, taking us to—3, and then thre@wists get back to
zero. Go ahead and do this with the ropes and verify that thdemes untangle the mess.



If you haven't done it already, this is a good time to swap irea set of four students.

Now for the best part: make another tangle, a bit more invibtiran the last one, and once it’s created, put the
tangle into a bag as follows. Take a plastic bag and make tvedl tiwles in the corners opposite the opening.

Take the ropes, one at a time, from the two kids on the left ard them through the holes and back to the
kid. Pull the bag opening over the tangle and tie the wholggtkhut so that the tangle is completely enclosed
in the bag.

Finally, carefully apply the steps that undo the tangle ahénvyou're done, there will be a horrible snarl
of ropes and plastic, which, if you've made no mistakes, &hbe equivalent to zero. To prove it, tear the
plastic bag into pieces to extract it from the tangle, ana tiv¢th a few tugs, the entire mess will appear to
magically untangle itself!

It's sometimes fun to do this more than once, so bring mone tiree plastic bag to the class.

5 *“Bad” Tangles

The following tangles are perfectly ok in a mathematicakserut untangling them is a long process, and
can be quite error-prone. For that reason, unless you'vargaochistic tendencies, avoid tangles with
numbers like—1/n, wheren is a large integer. They are easy to produce: suppose ydufistar zero
and doTTTTTTTTR: eight Twist dance figures followed by Rotate. This will produce the number
—1/8. It's a good exercise to try to untangle it using our methosige what happens. Here’s what happens,
shown as a series of steps:

| Start | Operation| Result]

—1/8| TRT | —1/7
—1/7| TRT | —1/6
~1/6| TRT | —1/5
—1/5| TRT | —1/4
—1/a| TRT | —1/3
—1/3| TRT | —1/2
—1/2| TRT —1
-1 T 0

It requires22 moves to return-1/8 to zero. Not only that, but the arithmetic is pretty boring:tgough the
details for a couple of the rows above to see what happens.

6 Discussion Topics
Here are a few ideas that may lead to interesting class dignss

6.1 Infinity as a Tangle Number

Try starting with zero and do a singRotate. This yields the nonsense valud /0, but it's not a nonsense
tangle. AnotheRotate will bring it back to zero, and in fact, it sort of behaves likefinity” in the sense



that aTwist (try it) leaves it exactly the same. This sort of correspdndbe idea that addingjto oo leaves
it unchanged. You may have discussed this earlier, depgmdithe sophistication of the class.

6.2 Proof of Convergence to Zero

Can you prove that the scheme outlined above will alwaysteradliy grind any initial fraction down to zero?
Go through a few examples and see what is happening. Hereeisaample starting from-5/17:
5 7 12 p 17 77 7 R 12 97 2 R Torrrrl R 2 77
—_—— e e, e e e e e e TS - ().
17 17 12 12 7 7 2 2 1

Note that after eacRotate command, the resulting negative fraction has a smallermérator. Why is this?
If the denominators always eventually get smaller, theytrawsntually get td. But when a denominator is
the fraction will be a negative integer, and if that integappens to be-n, we know that: Twist commands
(each adding) will reduce it to zero.

6.3 Relationship to the Greatest Common Divisor

If the students are a bit advanced, you can point out thatrieegs of reducing the fraction down to zero is
almost exactly the same as finding the greatest common d{gisa=C D) of the numerator and denominator.
Since we begin with a fraction reduced to lowest terms, tlilisalways get us down ta as theGCD.

Euclid’s algorithm for calculating th&C D of two numbers works as follows. If the two numbers arand

n, and we suppose that > n, we can writemm = kn+1, wherek > 1is aninteger and| < n. Any number
that dividesn andn must divide! in the equation above, so we can conclude®@tD (m,n) = GCD(n,1).
The numbers in the right hand side are reduced, and the groaase repeated until one is a multiple of the
other.

Here is an example: find th@C' D of 4004 and700:

4004 = 700 x 54 504
700 = 504 x 14196
504 = 196 x 24112
196 = 112x1+84
112 = 84x1428

84 = 28 x 3.

TheGCD of 4004 and700 must divide504 from the first line, s&7C' D (4004, 700) = GC'D(700, 504). The
same process can be continued to obtain:

GCD(4004, 700) = GCD(700,504) = GCD(504, 196)
= GCD(196,112) = GCD(112,84) = GCD(84, 28).

But 84 is an exact multiple 028, soGC'D(84,28) = 28, and we can therefore conclude that

GC'D(4004, 700) = 28



as well.

Note that there is no requirement that the numbers on th¢ higid sides of the sequence of reductions be
positive. All that we require for convergence is that theyshwller in absolute value than the smaller of the
two values for which you are trying to obtain th& D. Also note that division can be achieved by repeated
subtraction, and if you simply check to see if the subtracti®lds a non-positive number, you know you
have gone far enough. It's sort of like backing up your caiflyou hear breaking glass, but it works!

With all that in mind, let’s find the&>C D of 5 and17 using this totally crude method:

5 = 17x1-12
17 = 12x1+5=12x2-7
12 = Tx145=7Tx2-2

= 2x14+5=2%x24+3=2x3+1=2x4-1
= 1x14+1=1x2+0.

Note the similarity of this method to the one we used to ob@Gi{riD (4004, 700) above. But this time,
rather than doing a division, we do repeated subtractiotisthe remainder is zero or negative. Then we
use the (positive value of) the remainder in the next step.fidély discover thatl divides2 evenly, so
GCD(5,17) = 1. Now compare this sequence to the one that reduces the tzalgke—5/17 to zero at the
beginning of this section. You will see that the calculasi@ane virtually identical.

6.4 What Tangle Numbers Are Possible?

Is it possible to start from zero and get to any (positive ayatiwe) fraction? Have the students mess around
for a while and see what fractions they can come up with. Adsbgoals, such as, “Can you start from zero
and get to—3?" If there is no progress, here is a giant hint:

3 r 1 72 r 371 r 277
- — — — — — —
1 3 3 2 2 1

If we start from3 and work our way to zero using our standard methods, the sequ#l’ R7TT RT'T does
the trick. But now note that if we start from zero and use thesrge of the sequence above, namely:
TTRTTRTR, we get to—3. Also, note that at every stage in the sequence, the samfaare gen-
erated, except that they have opposite signs.2

6.5 Minimum Steps from 0

From the previous section, we know that we can get to anyifna¢tj by using our algorithm to grine-i/j
to zero, and then reversing the order of the dance figurelisighte minimum number of steps?

The tables below show the minimum number of steps to get tiiy@and negative fractions betweepl
and7/7 (the second shows the steps to get fractions betwdeh and—7/7). We use exponents to reduce
the size of the strings in the sense that we might expresetheesce T RTTRTTT asT (T RT)?*T?. An



X in a slot indicates that the fraction represented by thatisioot reduced to lowest terms. So for example,
to look up the shortest sequence that will get you from zereig7, we use the second table below (since the
fraction is negative). We look in the column headed-byand the row headed Byand find the following:
T(TTR)3, which would expand t&TTRTTRTTR, and it is easy to verify that this, in fact, will generate
—5/7. Check some other examples.

Similarly, if you look in the column headed lyand the row headed by you find anX, since6/4 is not
reduced to lowest terms: you should have been looking f@in column3, row 2.

Table 1: Positive fractions:

1 2 3 4 5 6 7
1 T T2 T3 T I 0 7
2 T?RT X T?RT? X T?RT3 X T?RT?
3 | T(TRT)? T3RT X T(TRT)’T T3RT? X T(TRT)?’T?
4 | T(TRT)® X TIRT X T(TRT)>T X TTRT?
5 | T(TRT)* | T?(TRT)? | T?’RT°RT T°RT X T(TRT)*T | T2(TRT)’T
6 | T(TRT)® X X X TSRT X T(TRT)°T
7 | T(TRT)® | T2(TRT)® | T°(TRT)? | T(TRT)?’T?RT | T?RT*RT T'RT X
Table 2: Negative fractions:
-1 -2 -3 —4 -5 —6 —7
1| TR | T(TRT)R | T(TRT)’R | T(TRT)°R | T(TRT)*R | T(TRT)°R T(TRT)°R
2 | TR X T2(TRT)R X T2(TRT)’R X T2(TRT)°R
3| T3R | T?RT?R X TARTR T?°RT3RTR X T2RT?RTR
4 | TR X (T?R) X T°RTR X (T?R)’T°RTR
5 | T°R | T?RT°R T3RT?’R | T(TRT)°TR X TSRTR T2RT?RTR
6 | T°R X X X (T?R)® X T'RTR
7| TTR | T?RT*R | (T?R)?’T°R T2RT?R T(TTR)? (TTR)® X

There are some obvious patterns here, and an interestingjsxes both to look at the patterns and then to
try to prove them. Here is a list of some of the obvious onedayes there are others.

™ : 0—mn
T(TRT)" : 0—1/(n+1)
T?RT™ : 0— (2n—1)/2
T?(TRT)" : 0—2/(2n+1)
T(TRT)"R : 0— —(n+1)

On the following page is a list of fractions that can be ob#dinstarting from zero, by applying various
sequences df' and R. The data on that page may also be useful to generate coe@hout sequence
patterns and the fractions resulting from them.

Some sequences do not yield patterns that are obvious atfosexample, consider the sequentéRT,
T3RT?, T*RT3, ..., in other words, what doeg" ! RT™ represent? The first few values arg, 5/3,
11/4,19/5,29/6. The denominators go up lyeach time and the numerators4y, 8, 10. A little fooling
around will yield the formulan(n + 1) — 1)/(n + 1), for n > 0. Following this idea can lead to an
investigation of how to find formulas to represent the numaliesome series.



Figure 2: Tangles with real rope

In Figure 2 is illustrated a series of tangles as they appdéarn@al rope. Reading from the top left, they
represent the numbers:

0,1,2,3,-1/3,-1/3+1=2/3,2/3+1=15/3,and — 1.

All but the final—1 are achieved from the previous tangle by a twist or a rotate.fihal tangle, correspond-
ing to —1, by performing rotate to the tangle in the upper right thatesentd.

10



Figure 3: Turnings/3 back to0.

Figure 3 illustrates the conversion of the tangle repressthy5/3 back to zero. We begin with/3 in the
upper-left photo, which is the same as )& displayed in Figure 2. It's easy to check that the sequence
RTRTTT R will convert that to—2 and each successive photo above shows the result after tiase?
steps. It should be clear by looking at it that two mdwést dance figures will completely untangle the ropes

in the final photo.

11



Here is a table listing the resulting fraction from varioeggences dof’ and R:

R | T°RT?’R | —5/9 T3RTR | —8/7 T'RT?RT | 6/13
T 1/1 TART* | 15/4 T'RT3 | 20/7 TSRT® | 29/6
T2 | 2/1 TIRT®R | —4/11 T'RT’R | —7/13 TSRTIR | —6/23
TR | —-1/1 TART?RT | 3/7 TOSRTT | 23/6 TSRT3RT | 11/17
73 | 3/1 T3RTS | 14/3 TSRT3R | —6/17 TSRTZRT? | 16/11
T?R | —-1/2 T3RT*R | -3/11 TSRT?RT | 5/11 TSRT?2RTR | —11/5
7% | 4/1 T3RT3RT | 5/8 T°RT® | 24/5 T°RT® | 29/5
T3R | —1/3 T3RT?RT? | 7/5 T°RTIR | —5/19 T°RTSR | —5/24
T?RT | 1/2 T3RT?RTR | —5/2 TSRT3RT | 9/14 TSRTART | 14/19
T5 | 5/1 T?RTS | 112 T°RT?RT? | 13/9 TORTSRT? | 23/14
TR | —1/4 T?RT°R | —2/9 T°RT?RTR | —9/4 T°RT3RTR | —14/9
T3RT | 2/3 T?RTART | 5/7 TIRT® | 23/4 T°RT?RT3 | 22/9
T?°RT? | 3/2 T?RT3RT? | 8/5 TART°R | —4/19 TSRT?RT?’R | —9/13
T?RTR | —2/1 T?RT°RTR | —5/3 TIRTART | 11/15 TART" | 27/4
76 | 6/1 TZRT?RTS | 7/3 TART3RT? | 18/11 TIRTSR | —4/23
T°R | —1/5 T?RT?RT?R | —3/4 TIRT3RTR | —11/7 TIRT®°RT | 15/19
TART | 3/4 T 1 10/1 TART?RT3 | 17/7 TART*RT? | 26/15
T3RT? | 5/3 TR | —1/9 TIRT?RT?R | —7/10 TIRT*RTR | —15/11
T3RTR | —3/2 T8RT | 7/8 T3RT7 | 20/3 TIRT3RT? | 29/11
T?RT3 | 5/2 T'RT? | 13/7 T3RTSR | —3/17 TIRT3RT?R | —11/18
T?RT?R | -2/3 T'RTR | —-7/6 T3RT°RT | 11/14 TART?RT* | 24/7
71 7/1 TSRT3 | 17/6 T3RT*RT? | 19/11 TIRT?RT3R | —7/17
TSR | —1/6 TSRT?R | —6/11 T3RTIRTR | —11/8 TART?RT?RT | 3/10
T°RT | 4/5 T°RT? | 19/5 T3RT3RTS | 21/8 T3RTS | 23/3
TART? | 7/4 TSRT3R | —5/14 T3SRT3RT?R | —8/13 T3RT'R | —3/20
TIRTR | —4/3 T°RT?RT | 4/9 T3RT?RT* | 17/5 TSRTCSRT | 14/17
T3RT3 | 8/3 TIRTS | 19/4 T3RT?RT3R | —5/12 T3RT°RT? | 25/14
T3RT?R | -3/5 T2RT*R | —4/15 T3RTZRT?RT | 2/7 T3RT°RTR | —14/11
T?RT* | 7]2 TARTPRT | 7/11 T?RT® | 15/2 TSRT*RT? | 30/11
T?RT3R | —2/5 TIRT?RT? | 10/7 T?RT'R | —2/13 T3RTART?R | —11/19
T?RT?RT | 1/3 TIRT?RTR | —7/3 TZRTSRT | 9/11 T3RT3RT* | 29/8
T8 | 8/1 T3RT® | 17/3 T?RT°RT? | 16/9 T3RT3RT?R | —8/21
TR | —1/7 TSRT°R | —3/14 T?RI°RTR | —9/7 TSRTSRT?RT | 5/13
TSRT | 5/6 T3RTART | 8/11 T?RTARTS | 19/7 T3RT?RT® | 22/5
T°RT? | 9/5 T3RT3RT? | 13/8 T?RTIRT?R | —7/12 T3RT?RTR | —5/17
T5RTR | —5/4 T3RT3RTR | -8/5 T?RT3RT* | 18/5 T3RT?RT3RT | 7/12
TIRT® | 11/4 TSRT?RT? | 12/5 TZRISRTSR | —5/13 | T°RIZRT?RT? | 9/7
TIRT?R | —4/7 T3RT?RT?R | —5/7 TZRT3RT?RT | 3/8 T3RT?RT?RTR | —7/2
T3RT? | 11/3 TZRT7 | 13/2 T?RT?RT® | 13/3 TZRTY | 17/2
T3RT3R | -3/8 T?RTSR | —2/11 T?RT?RT*R | —3/10 T?°RT3R | —2/15
T3RT?RT | 2/5 T?RT°RT | 7/9 T?RT?RTRT | 4]7 T?RT'RT | 11/13
T2RT® | 9/2 TZRTART? | 12/7 TZRT?RT?RT? | 5/4 TZRTSRT? | 20/11
T?RT'R | —2/7 T?RTIRTR | —7/5 | T2RT?RT?RTR | —4/1 T?RTSRTR | —11/9
T?RT3RT | 3/5 T?2RT3RT? | 13/5 T2 | 12/1 T?RT°RT? | 25/9
T?2RT?RT? | 4/3 T?RT3RT?R | —5/8 THUR | —1/11 T?RT°RT?’R | —9/16
T?RT?RTR | —3/1 TZRT?RT? | 10/3 TORT | 9/10 TZRTIRT* | 26/7
79 | 9/1 T?RT?RT3R | -3/7 TORT? | 17/9 T?RTIRT3R | —7/19
TSR | —1/8 | T?RT?RT?RT | 1/4 T9RTR | —9/8 T?RT*RT?RT | 5/12
T'RT | 6/7 T | 11/1 TSRT3 | 23/8 TZRT3RT® | 23/5
TSRT? | 11/6 TOR | —1/10 T3RT?R | —8/15 T?RT3RT*R | —5/18
TSRTR | —6/5 T°RT | 8/9 T'RT* | 27/7 T?RT3RT3RT | 8/13
T°RTS | 14/5 TSRT? | 15/8 T'RT®R | —7/20 | T?2RIPRT?RT? | 11/8
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Here are the sequences required to return various fractaeso, organized by denominator. The first twelve
numerators that are relatively prime to the denominatolisted for each denominator.

1/1: RT 1/7: RT'

2/1: RTRT? 2/7: RT*RT?

3/1: RTRT2RTZ2 3/7: RT3RT2RT?

4/1: RTRT?2RT?RT? 4/7: RT?RT*

5/1: RTRT2RT2RT2RT? 5/7: RT2RT2RT3

6/1: RTRT2RT?2RT?2RT?2RT? 6/7: RT2RT2RT2RT2RT2RT2

7/1: RTRT?RT?RT?RT?RT?RT? 8/7: RTRTS

8/1: RTRT?RT?RT?RT?RT?RT?RT? 9/7: RTRT®RT?

9/1: RTRT?RT?RT?2RT?2RT?2RT?2RT?RT? 10/7: RTRT*RT2RT2

10/1: RTRT?RT2RT?RT?RT2RT2RT2RT2RT? 11/7: RTRT3RT*

11/1: RTRT?RT2RT2RT2RT2RT2RT2RT2RT?RT? 12/7: RTRT3RT2RT3

12/1: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT? 13/7: RTRT3RT?RT?RT?RT?RT?

1/2: RT?2 1/8: RTS8

3/2: RTRT3 3/8: RT3RTS

5/2: RTRT2RT3 5/8: RT2RT3RT?

7/2: RTRT?RT?RT3 7/8: RT2RT2RT2RT2RT2RT?2RT?2

9/2: RTRT?2RT?RT?RT3 9/8: RTRTY

11/2: RTRT2RT2RT2RT2RT3 11/8 : RTRT*RT3

13/2: RTRT2RT2RT2RT2RT2RT3 13/8 : RTRT3RT3RT?

15/2: RTRT2?RT2RT2RT2RT2RT2RT3 15/8: RTRT3RT2RT2RT2RT2RT2RT2
17/2: RTRT?RT2RT?RT2RT?RT2RT?RT3 17/8: RTRT?RT®

19/2: RTRT?RT?RT?RT?RT?RT?RT?RT?RT3 19/8 : RTRT2RTART3

21/2: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT3 21/8: RTRT2RT3RT3RT?

23/2: RTRT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT3 23/8: RTRT2RT3RT2RT2RT2RT2RT2RT?2
1/3: RT3 1/9: RTY

2/3: RT2RT? 2/9: RT®°RT?

4/3: RTRT* 4/9: RT3RT2RT2RT2

5/3: RTRT3RT? 5/9: RT2RT®

7/3: RTRT2RT? 7/9: RT2RT?RT2RT3

8/3: RTRT2RT3RT? 8/9: RT2?RT2RT?RT2RT?RT2RT?RT?
10/3: RTRT2RT2RT? 10/9: RTRTLO

11/3: RTRT2RT2RT3RT2 11/9: RTRTSRT?2

13/3: RTRT2RT2RT2RT? 13/9: RTRT*RT2RT2RT2

14/3: RTRT2RT2RT2RT3RT? 14/9: RTRTSRT®

16/3: RTRT2?RT2RT2RT2RT? 16/9: RTRTSRT2RT2RT3

17/3: RTRT2RT2RT2RT2RT3RT? 17/9: RTRT3RT2RT2RT2RT2RT2RT2RT?
1/4: RT* 1/10: RT10

3/4: RT2RT2RT2 3/10: RT*RT?2RTZ2

5/4: RTRT® 7/10: RT?RT?RT?

7/4: RTRT3RT?RT? 9/10: RT2RT2RT2RT2RT2RT2RT2RT2RT?
9/4: RTRT2RT® 11/10 : RTRT!

11/4: RTRT2RT3RT2RT2 13/10 : RTRTSRT2RT?

13/4: RTRT2RT?RT® 17/10 : RTRT3RT2RT*

15/4: RTRT?RT?RT3RT?RT? 19/10 : RTRT3RT2RT2RT?RT2RT?RT2RT2RT?
17/4: RTRT2RT2RT2RTS 21/10: RTRT2RT1!

19/4: RTRT2RT2RT2RT3RT2RT? 23/10: RTRT2RTSRT2RT?

21/4: RTRT2?RT2RT2RT2RT® 27/10: RTRT2RT3RT2RT?

23/4: RTRT2RT?RT2RT?RT3RT?RT? 29/10: RTRT2RT3RT2RT?2RT2RT?2RT2RT?2RT2RT?
1/5: RT® 1/11: RTM

2/5: RT3RT? 2/11: RTSRT?

3/5: RT2RT3 3/11: RT*RT3

4/5: RT2RT2RT2RTZ2 4/11: RT3RT?

6/5: RTRT® 5/11: RT3RT?RT2RT2RT?2

7/5: RTRTART? 6/11: RT2RTS

8/5: RTRT3RT3 7/11: RT2RT3RT2RT?

9/5: RTRT3RT2RT2RT? 8/11: RT2RT?RT3RT?

11/5: RTRT2?RT® 9/11: RT2RT2RT2RT?2RT3

12/5: RTRT?RT*RT? 10/11: RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
13/5: RTRT2RT3RT3 12/11: RTRT!2

14/5 : RTRT2RT3RT2RT2RT? 13/11: RTRTTRTZ2

1/6: RTS 1/12: RT!2

5/6: RT2RT2RT2RT2?RT? 5/12: RT3RT2RT3

7/6: RTRTT 7/12: RT2RT*RT?

11/6 : RTRT3RT2RT2RT2RT? 11/12: RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
13/6 : RTRT2RT7 13/12: RTRT3

17/6 : RTRT?RT3RT?RT?RT?RT? 17/12: RTRT*RT2RT3

19/6 : RTRT2RT2RT" 19/12: RTRT3RTART?

23/6: RTRT2RT2RT3RT2RT2RT2RT? 23/12: RTRT3RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
25/6: RTRT2RT2RT2RT7 25/12 1 RTRT2RT13

29/6: RTRT2RT?RT?RT3RT2RT?2RT2RT? 20/12: RTRT?RT*RT2?RT3

31/6 : RTRT2RT2RT2RT2RT7 31/12: RTRT2RT3RT4RT?

35/6 : RTRT2RT?RT?RT?RT3RT?RT?RT?RT? 35/12: RTRT2RT3RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2
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—i/1: T —1/7: TRT?RT?RT?RT?RT?RT?

—2/1: T2 —2/7: TRT2RT2RT3

—3/1: T3 —3/7: TRT?RT?

—a/1: T4 —4/7: TRT3RT?RT?

—5/1: TP —5/7: TRT*RT2

—6/1: T6 —6/7: TRT"

—7/1: 17 —8/7: T2RT?RT?RT?RT?RT?RT?

—8/1: T8 —9/7: T2RT?RT2?RT3

—9/1: 19 —10/7: T2RT2RT*

—10/1: 110 —11/7: T2RT3RT2RT?

—11/1: 11t —12/7: T2RT4*RT?

—12/1: 7112 —13/7: T2RTT

—1/2: TRT? —1/8: TRT?RT?RT?RT?RT?2RT?RT?

—3/2: T2RT? —3/8: TRT2RT3RT?2

—5/2: T3RT? —5/8: TRT3RT3

—7/2: TART? —7/8: TRTS

—9/2: TORT? —9/8: T2RT2RT?RT?RT?RT?RT?RT?

—11/2: TORT? —11/8: T2RT2RT3RT?

—13/2: TTRT? —13/8: T2RT3RT3

—15/2: TSRT? —15/8: T2RTS

—17/2: T9RT? —17/8: T3RT?RT?RT?RT?RT?RT?RT?
—19/2: TIORTZ2 —19/8: T3RT?RT3RT?

—21/2: TlRT2 —21/8: T3RT3RT3

—23/2: T12RT?2 —23/8: T3RTS

—1/3: TRT2RT? —1/9: TRT2RT?RT2RT?2RT2RT2RT2RT?
—2/3: TRT? —2/9: TRT?RT?RT?RT3

—4/3: T2RT?RT? —4/9: TRT2RTS

—5/3: T2RT3 —5/9: TRT3RT2RT2RT?

—7/3: T3RT2RT?2 —7/9: TRT®RT?

—8/3: T3RT3 —8/9: TRT?

—10/3: T*RT?RT? —10/9: T2RT2RT2RT2RT2RT2RT2RT2RT?
—11/3: TART3 —11/9: T2RT2RT2RT2RT3

—13/3: TSRT2RT?2 —13/9: T2RT2RTS

—14/3: TORT3 —14/9: T?RT3RT?RT?RT?

—16/3: TOSRT?RT? —16/9: T2RTPRT?

—17/3: TOSRT3 —17/9: T2RT?

—1/4: TRT2RT2RT? —1/10: TRT?RT2RT2RT2RT2RT2RT2RT2RT?
—3/4: TRT* —3/10: TRT2RT2RT*

—5/4: T2RT?RT2RT? —7/10: TRT*RT2RT?

—7/4: T2RT* —9/10: TRT1O

—9/4: TSRT2RT2RT? —11/10: T2RT2RT2RT2RT2RT2RT2RT2RT2RT?
—11/4: T3RT? —13/10: T2RT2RT2RT?

—13/4: T*RT2RT2RT? —17/10: T2RT*RT2?RT?

—15/4: TART? —19/10: T2RT10

—17/4: TPRT?2RT?RT? —21/10: T3RT2RT2RT2RT2RT2RT2RT2RT2RT?
—19/4: TORT? —23/10: T3RT2RT2RT?

—21/4: TSRT2RT2RT? —27/10: T3RT*RT2RT?

—23/4: TORT* —29/10: T3RT1O

—1/5: TRT?RT?RT?RT? —1/11: TRT?RT?2RT2RT2RT2RT2RT2RT2RT2RT?
—2/5: TRT2RT3 —2/11: TRT2RT2RT2RT2RT3

—3/5: TRT3RT? —3/11: TRT?RT2RT3RT?

—4/5: TRT® —4/11: TRT?RT3RT?RT?

—6/5: T2RT?RT2RT2?RT? —5/11: TRT2RTS

—7/5: T2RT2RT3 —6/11: TRT3RT2RT2RT2RT?

—8/5: T2RT3RT?2 —7/11: TRT3RT*

—9/5: T2RTS —8/11: TRT*RT3

—11/5: T3RT?RT?RT?RT? —9/11: TRTSRT?

—12/5: T3RT?RT3 —10/11: TRT

—-13/5: TSRT3RT? —12/11: T2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
—14/5: T3RT® —13/11: T2RT2RT2RT2RT2RT3

—1/6: TRT?RT?2RT?RT?RT? —1/12: TRT?RT?RT?RT?RT?RT2RT?RT?RT2RT?RT?
—5/6: TRTS —5/12: TRT2RT*RT?

—7/6: T2RT2RT2RT2RT2RT? —7/12: TRT3RT2RT3

—11/6: T2RTS —11/12: TRT12

—13/6: T3RT2RT2RT2RT2RT? —13/12: T2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
—17/6: T3RTS —17/12: T2RT2RT*RT?

—19/6: T*RT2RT2RT2RT2RT? —19/12: T2RT3RT2RT3

—23/6: T*RTS —23/12: T2RT12

—25/6: TSRT2RT2RT2RT2RT? —25/12: T3RT2RT2RT2RT2RT2RT2RT2RT2RT2RT2RT?
—29/6: TORTS —29/12: T3RT2RT*RT?

—31/6: TOSRT?RT2RT2RT?2RT? —31/12: T3RT3RT?RT3

—35/6: TOSRTS —35/12: T3RT12
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7 Avoiding Infinity

For some reason, many people are disturbed by the fact theat aumber which we called “infinity” has to
be added to the rational numbers if we wish to represent aBlipte tangles. You can use this as a discussion
point to remind the students that the process of adding itenosir number systems is old and commonly
done.

For example, the natural numbers are usually the first syatetmave, but if you want an inverse for addition
that always works, you've got to add the negative numberldmtto create the integers. Then, if you want
to be able to invert multiplication (except by zero), you cié@ add all the rational numbers to the integers.
To solve equations like? = 2, you find a need to add the algebraic numbers. This continubetreals and
the complex numbers. We're just extending the rationalssiightly different way to make a number system
to represent tangles.

But another way to look at it might be justified by the idea tteg numerical operation corresponding to
Rotate mapsz to —1/x. If we talk about the slope: of a line in the plane, the slope of a line perpendicular
to it has slope-1/m: exactly the same operation.

Instead of numbers to represent tangles, use lines fronrithia that pass through integer lattice points. This
includes, of course, the vetical line (passing throg@ld) and (0, 1) that has “undefined” slope, but from a
geometric viewpoint, this is just another line).

TheRotate command corresponds to rotating the linedy about the origin.

The Twist command is a little bit trickier: toTwist” a line, select a lattice point on the line that has a non-
negativez-coordinate (other tha(0, 0)), move that point up by the-coordinate of the point, and the new
line passes through that new point and the origin. Matheraldj if the lattice point has coordinatés, y),
then the new lattice point will have coordinatesy + z). This is exactly what we did before: the fraction
y/x was converted by &wist command ta;/z + 1 = (y + x)/z. Check that the right thing happens for the
vertical line.

-----------------------------

Figure 4: Lines corresponding to tangles

15



Figure 4 illustrates both operations. On the left side offipere is a plot of the line having slogg’3 and
that line rotated0° having slope-3/5. If we were trying to reduce to zero the tangle correspontbirig'3
we would first issue th®otate command yielding a tangle correspondingt8/5. Next, we would issue a
Twist command and graphically that corresponds to the operatigheoright. A lattice point withe > 0 on
the line is selected (in this casé, —3)) and that point'sc-coordinate is added to itgcoordinate, yielding
(5,2). The new line passes through the origin &602).

There are a couple of other interesting features that caedreis the figure. The rational numbers that can
be associated with tangles, when reduced to lowest terrhbeviepresented by points that are “visible” from
the origin. For example, if you were standing at the origioking at the poin{3,5), the point(6, 10) is
“hidden” behind it. In the figure, only visible points are inded.

Second, we apply @wist command only when the line corresponding to our tangle hasgative slope.
Since we only increase by the amount corresponding tactheordinate, the resulting line, once it has a
positive slope, will never have a slope of more thaf. When such a line is rotated, the rotation effectively
swaps thexr andy coordinates (and flips one of the signs), so the resultingesponding fraction has a
smaller denominator.

8 Algebraic Considerations
If we ignore the ropes and just look at the algebra involvegl ane basically considering the interaction of
two mathematical functions under function composition:
tz) = z+1
r(z) = —-1/x
If we applyt three times followed by to any input number, the result is:
r(t(tt(z)))) =r(x +3)=—-1/(xz+ 3).

Note the apparent reversal of the operations due to theifurattnotation:t is applied first taz, then another
application tot to that, and so on.

We can apply any combination b&ndr to an input value, in any order, but some applications arefficient”

in the sense that if we applytwice in a row, it's as if we did nothing, sinedr(z)) = z. It is often useful
in mathematics to have a symbol for the “do nothing” opergtior, as it is ususally called, the identity
operation. Here we will call that do-nothing operatiomn other words,

i(z) =z

We can indicate that fact that the application-divice in a row is the identity function as:

Are there any other simplifications to be found?
The answer is yes, and it is easy to check algebraically that:



Here’s the proof:

tr@t(r(t(r(2)))) = trErE(=1/z)))))
= t(r@t(r(l —1/x))))
= t(r(t(z/(1-2))))
= t(r(1/(1—2)))
= t(z—-1)

It is also easy to show tha{t(r(¢(r(t(x)))))) = i(x) (note the reversed order). This can be shown with
a calculation similar to the one above or by appealing to 8smaativity of function composition, or by
knowing a bit of group theory. The bottom line, however, iattthe sequenc&7'RT R will unto aT. A
mathematician would write this ag:~! = RTRTR.

This provides a trivial (but often very inefficient) methadundo any sequence of twists and rotates. Imag-
ine thata, b, ¢, ..., y, 2z are either twists or rotates (in any order), and that you lzomied the sequence:
abcd - - - z to a tangle. To undo that sequence, you first would undo thethasy you did, namely,,
then you’d undoy, and so on, and finally, undg thenbd, thena. For example, to undo the sequence
T3RT = TTTRT, you would apply:

T'R'T'T77'T~! = (RTRTR)R(RTRTR)(RTRTR)(RTRTR).

Notice, of course, that this sequence contains places where than one? is applied at a time, and since
each suchRk can undo the previous one, we obtain:

(RTRTR)R(RTRTR)(RTRTR)(RTRTR) = RTRTR*TRTR*TRTR?TRTR
RTRTRTRT?RT?RTR.

But the term on the right can be simplified even more, sincefi&T RT on the left does nothing. Thus,
the inverse o 3RT is RT?RT?*RTR.

8.1 Group Theory

All of the above can be used as an introduction to a subjetgctc&Group Theory”. Volumes are written
about the subject, but the operatidfiand R and their combinations form an infinite group. A group is a
mathematical object that consists of a set of objé&(#n this case, the various combinations®fandT),
and an operatior on those objects (in this case, their combination), satigfthe following four axioms:

1. The operatior is closed. In other words, il andB are any two objects i, thenA « B is also inG.

2. The operation is associative. In other words, 4, B andC are any three objects ifd, then(A x B)
C=Ax(BxQ).

3. There exists an identity objeLin G. In other words, ifA is any object inG, thenAx I = I x A = A.
4. For every objectl in G, there is aninverséd —! in G suchthatd « A=! = A='A = I.
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In the case of our tangle group, the element§iare simply finite lists ol andT". Inverses can be calculated
as described above, and the identity is the “do nothing” aipam, or equivalentlyR R. We have omitted the
operation« in our description, but you can imagine it being between aay @f letters, saRTT'RT could
have been writte®R « T'x T « R T.

What makes our group a bit more interesting is that arbitstiings of R and7" can often be simplified
because of the conditiodgR = I and(TR)? = I.

In the last section, we said that "the inverse&l&fRT is RT?RT?>RTR’. Let’s see why.

If it is the inverse, then applying one followed by the otheogld yield the identity. In other words, it should
be true that:
T3RTRT?RT?RTR =1,

and we should be able to show that it is using only the two itlestk? = I and (T'R)® = I (which is
equivalent to (why?YRT')® = I). These last two can also be writt€fi:= RTRTRandR = TRT RT, so:

T3RTRT?RT?RTR = TTTRTRTTRTTRTR
= TT(TRTRT)TRTTRTR
= TT(R)TRTTRTR
= T(TRTRT)TRTR

T(R)TRTR= (TR)* =1
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9 Sample Tangles

When you run this circle for the first few times, it's easy tokaarithmetic mistakes, since you need to do
arithmetic while you're trying to do everything else. Whatléws are a few examples that you can do by
rote: have the kids do the given sequence, and make surenthablution sequence is the one described
afterwards.

The "Sequence” begins with = 0/1 and shows how each step generates the next fraction. Th®frat
the end represents the result of the entire sequence. Th&it®d represents the shortest correct sequence
that will return the ropes to the solveg) (state.

Sequence: TTT
0 7

- —

1

[\)

T T
s - -, -

1

==

Solution: RTRTTRTT

3 p -1 72 p -3 17 -1 71 pr -2 7 -1 7 0
- — — - —_— — —— — —— = — — —— — —— —
1 3 3 2 2 2 1 1 1
Sequence: TTTRT
O 1 7 2 7 3 r -1 71
- — - — = — - — —
1 1 1 1
Solution: RTTRTT )
-1 7

2 R =3 7T 1 r 2 7 -1 70
e . e
3 2 2 2 1 1 1
Sequence: TTTRTTTTR
O r1r+ 2+ 3 r -1 7 2 75 7 &8 7 11 r -3
e — = = _ —
1 1 1 1 3 3 3 3 3 11
Solution: TRTTRTTRTTTRTT
-3 r 8 p 11 7+ -3 5 p 8 7 -3 7 2 rp -5 7 -3 7 -1
e e
11 11 8 8 8 5 5 5 2 2 2
T 1 p =2 7 =1 7 0
_— s — s — 5 —
2 1 1 1
Sequence: TTTTRTTTT
O r1 72 ¢+ 3 74 rp -1 7 3 » 7 ¢ 11 17 15
N — — — - — —
1 1 1 1 1 4 4 4 4 4

Solution: RTRTTRTTRTTTRTTRTT

15 r 4 » 11 =15 » -4 » 7 r =11 » -4 » 3 r -7 7 —4
e Y e

4 15 15 11 11 11 7 7 7 3 3
r -1 17 2 p -3 7 -1 1 rp -2 7 -1 17 0
—_—— = —— — — — — = —— — — — 5 —
3 3 2 2 2 1 1 1

If you are confident of your arithmetic, | have found that aertiangle to use is-17/43. Using the methods
of Section 6.4, start witl7/43 on the blackboard and grind that down to zero (using only noathhe
blackboard). Then reverse the steps, starting from a zegiedo obtain a tangle represented-by7,/43.

It is a fairly long process, but it builds the suspense. Ti@g@ twer this tangle, and the nice thing is that it
untangles quickly, and in fact, ends with nifwist commands in a row!
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